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A stabilizing gradient of solute inhibits the onset of convection in a fluid which is 
subjected to an adverse temperature gradient. Furthermore, the onset of insta- 
bility may occur as an oscillatory motion because of the stabilizing effect of the 
solute. These results are obtained from linear stability theory which is reviewed 
briefly in the following paper before finite-amplitude results for two-dimensional 
flows are considered. It is found that a finite-amplitude instability may occur 
first for fluids with a Prandtl number somewhat smaller than unity. When the 
Prandtl number is equal to unity or greater, instability first sets in as an oscil- 
latory motion which subsequently becomes unstable to disturbances which lead 
to steady, convecting cellular motions with larger heat flux. A solute Rayleigh 
number, R,, is defined with the stabilizing solute gradient replacing the de- 
stabilizing temperature gradient in the thermal Rayleigh number. When R, is 
large compared with the critical Rayleigh number of ordinary BBnard convection, 
thevalue of the Rayleigh number at  which instability to finite-amplitude steady 
modes can set in approaches the value of R,. Hence, asymptotically this type of 
instability is established when the fluid is marginally stratified. Also, as R, -+ co 
an effective diffusion coefficient, K ~ ,  is defined as the ratio of the vertical density 
flux to the density gradient evaluated at  the boundary and it is found that 
K~ = - ,/(KK,) where K ,  K, are the diffusion coefficients for temperature and solute 
respectively. A study is made of the oscillatory behaviour of the fluid when 
the oscillations have finite amplitudes; the periods of the oscillations are found 
to increase with amplitude. The horizontally averaged density gradients change 
sign with height in the oscillating flows. Stably stratified fluid exists near the 
boundaries and unstably stratified fluid occupies the mid-regions for most of the 
oscillatory cycle. Thus the step-like behaviour of the density field which has 
been observed experimentally for time-dependent flows is encountered here 
numerically. 

1. Introduction and discussion 
A vertical gradient of solute, such as salt, in a layer of fluid can serve to in- 

hibit the onset of convection when the fluid is heated from below. The effect of 
the solute on the stability of the fluid layer and some effects on finite-amplitude 
motion for two-dimensional flows have been discussed by Sani (1965) and by 
Veronis (1965).t This paper extends the study of paper I to give accurate 

We shall refer t,o this as paper I. 
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quantitative results for a range of Rayleigh numbers, R, which differ by as much 
as an order of magnitude from the critical values of linear stability theory. We 
consider free, perfectly conducting boundaries a t  top and bottom. 

In the earlier paper we found that the presence of a stabilizing gradient of 
solute inhibits convection and also introduces the possibility of oscillatory 
motions, a possibility which does not exist for ordinary Bhard  convection near 
the critical Rayleigh number. We also deduced that finite-amplitude instabilities 
leading to steady motions could exist for values of the Rayleigh number sig- 
nificantly lower than the critical value of linear stability theory. The analysis 
was based on a Fourier series representation which was minimal in the sense that 
the first finite-amplitude results could be represented but no attempt was made 
to determine the quantitative validity of the representation. The present work 
takes into account a representation sufficiently large to produce quantitatively 
significant results for the phenomena which are discussed. 

After the equations and the proposed method of solution are set forth in the 
next section, we summarize the linear stability analysis and the results from paper 
I in $3. In  addition some recent results of P. G. Baines on the linear problem 
are discussed. Baines has pointed out that oscillatory motions with zero fre- 
quency can be interpreted as steady motions and t'hat these can exist at values of 
the Rayleigh number below those derived by assuming steady motions from the 
outset. If R, denotes the Rayleigh number defined with the imposed stabilizing 
gradient of solute instead of the imposed destabilizing gradient of temperature 
(R, is called the solute Rayleigh number here) and if r = K,/K denotes the ratio 

of diffusivities of solute and heat, the assumption of steady modes yields the 
asymptotic result for the critical Rayleigh number, R +- R,/r as R,+ 00. For 
oscillatory modes with vanishing frequency, Baines has deduced the asymptotic 
result R + R,. Generally we have r < 1 so that the latter result yields a smaller 
critical Rayleigh number for non-oscillatory modes. 

Our primary purpose in this paper is to determine the behaviour of the con- 
vecting system in the presence of a stabilizing solute gradient. For this purpose 
we choose the values of the parameters so that the results can be derived 
economically on a computer. This means that the important case of 7 = 0.01 
which corresponds to thermal convection with a salt gradient could not be 
treated but this is offset by the fact that we can deduce the behaviour of the 
system for a range of R, which would otherwise be unattainable. In  specific 
calculations we have worked with r = 10-6 and 7 = 2-3. 

If we denote by R, the value of the critical Rayleigh number in the absence of 
a solute gradient, we can expect that for R, < R, the effect of the solute will be 
small whereas for R, $ R, the effect will dominate. Hence, since R, = 2$7r4, we 
have calculated results for the range 10% < R, 6 2 x lo4 in order to include results 
for both extreme situations. 

To study the dependence on Prandtl number, u, we have derived finite-ampli- 
tude solutions for u = 10, (T = 1, u = 0.1 for a configuration with R, = lo3, 
r = 10-4 and for a range of Rayleigh numbers. Linear stability theory predicts 
that instability to steady modes will occur a t  R = RC = 3820 for all three cases. 
Oscillatory modes occur at  the values of R = Ro listed under the corresponding 
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values of CT at the top of table 1. We see that for CT = 0.1 linear theory predicts 
that steady motions occur first but that for IT = 1 and IT = 10 instability 
manifests itself in the form of oscillatory motions. 

The finite-amplitude calculations confirm that infinitesimal oscillatory motions 
do indeed occur first for G = 10 and IT = 1. For the case with CT = 0.1 the first 
instability which can occur is a finite-amplitude instability. This is evident from 
table 1 (fifth column), where we note that at  R = 1900 no convection occurs (the 
Nusselt number, N u ,  equals one) whereas, at R = 2000, N u  = 1.844, which im- 
plies well-developed convection. For the cases with IT = 1 and r~ = 10 well- 
developed steady convective motions also exist at  R = 2000 although, as we 
noted earlier, an oscillatory motion is established first at the value of the Rayleigh 
number predicted by linear theory. 

With themethod of paper I a minimal representation yields a finite-amplitude 
instability a t  R = Rf = 1773. When we increase the representation to give 
quantitative results valid to within 1 %, we find that Rf is increased to a value 
lying between 1900 and 2000. This type of adjustment was also encountered for 
the case of a rotating fluid (Veronis 1968). 

Table 1 also shows that as R is increased to a value much larger than R, the 
value of M u  approaches that derived in the absence of a solute. This simply 
means that, when the destabilizing gradient exceeds the stable gradient suffici- 
ently, the system convects and mixes the solute. The fact that the latter has a 
small diffusion coefficient implies that the solute cannot adjust back to the 
inhibiting linear distribution that it has with pure conduction and its effect is 
correspondingly less. 

Computations were carried out for the cases CT = 1, r = 1 0 4  and CT = 1, r = 2-4 
for values of R, up to 2 x lo4. It was found that finite-amplitude instability 
leading to steady motions was established at values of R which approached the 
values of R, as the latter increased. Turner (1968) has observed the same re- 
lat'ionship between R and R, as the condition which determines the depth of 
penetration of time-evolving convection cells generated by heating a stably 
stratified fluid from below. Since the ratio RIR, corresponds to the ratio of the 
destabilizing to stabilizing gradients imposed on the system, the conclusion is 
that finite-amplitude instability takes place asymptctically when the system is 
marginally gravitationally unstable. The value of the Nusselt number corre- 
sponding to the established steady motions increases as R,increases. Both of these 
results are intuitively plausible. 

Since the fluid is stratified by temperature and solute, diffusion and con- 
vection lead to vertical fluxes of heat and solute. These two quantities can be 
combined to yield adensity flux through the fluid. For these steady-state motions 
one can also calculate the horizontally averaged density gradient at the upper 
and lower boundaries. Dividing the flux by the gradient thus yields an effective 
density diffusion coefficient, K ~ . ?  This coefficient will generally be a function of 

t Although one does not ordinarily associate a diffusion coefficient with density because 
the mass velocity is defined to account for all of the flux of density, for inultiple-component 
systems with different diffusion coefficients it ma,y be meaningful to define such a diffusion 
coefficient for density. 
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the various parameters of the problem. For example, for given cr and T the value 
of I C ~  will depend on the values of R and R,. However, as RIR, approaches unity 
we find that K~ approaches a fixed value independent of the individual values of 
R and R, but dependent only on their ratio. The limit, RIR, = 1, is an interesting 
one because it corresponds to the situation where the net imposed density differ- 
ence is zero, since the effects of temperature and salinity on density just compen- 
sate. As we pointed out earlier, as R, becomes larger, finite-amplitude steady 
motions first occur for R -+ R, so that the derived effective coefficient of diffusion 
at  RIR, = 1 is appropriate to the situation where finite-amplitude steady motions 
are first established. When T = 1 0 4  and r = 2-4 we find in this limit that K,, tends 
to -J (KK, ) ,  i.e. that the diffusion coefficient for density is the negative of the 
square root of the product of the diffusivities of solute and temperature. A 
heuristic argument by Dr Claes Rooth gives the same result and is also outlined 
in $4. 

Figures 2 and 3 contain spatial descriptions of the field variables for a typical 
steady-state flow. The horizontally averaged density distribution shown in 
figure 3c is a composition of the temperature and salinity distributions and 
reflects the expected convective distortion of the linear conductive profile. The 
density has a, sharper gradient near the boundaries and a relatively uniform 
value in the mid-regions of the layer. 

An analysis of the mean density profile for the finite-amplitude oscillatory 
flow which exists for a Rayleigh number in the range Ro < R < Rf shows that 
the horizontally averaged vertical density gradient a t  the boundary can be either 
positive or negative even though the net imposed density difference is positive. 
During the oscillatory cycle the flux of density is always positive downward; so 
that, during part of the cycle, the density flux is up the density gradient and, dur- 
ing the remainder of the cycle, the density flux is down the density gradient. 
Hence, K p  as defined above achieves both positive and negative values at  different 
times under the same external conditions. 

Figure 5 contains a time sequence of the mean density profiles over a cycle. 
The density gradient is gravitationally stable near the boundaries and unstable 
in the interior over most of the cycle. In  view of the fact that the steady-state 
distributions show mean density gradients which are predominantly unstable 
gravitationally, this stable structure near the boundary marks a significant 
difference for the oscillatory flows. Heat and solute are still being transported 
upward in the oscillatory flow as can be seen in the plots of heat and solute flux 
in figure 4. However, these fluxes are not in phase and the composition leading 
to the density flux is out of phase with both the heat and solute fluxes and the net 
result is a negative vertical density gradient near the boundaries. Hence the 
time-dependent flow exhibits a step-like structure with positive and negative 
density gradients. This type of alternate structure has been observed experi- 
mentally by Turner & Stommel(l964) and by Turner (1965, 1968) in laboratory 
experiments of transient flows and is also characteristic of vertical density profiles 
in nature. The physical conditions under which the observations have been made 
differ from those set forth here but they are qualitatively similar in some cases. 
Because pr'escribed conditions in both nature and in the laboratory experiments 
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to  date lead to transient flows of large amplitude, the present analysis cannot be 
directly applied. It seems likely that a description of the observed flows can be 
put together from the two processes discussed here. The transient behaviour is 
due to the different diffusivities and the resulting phase differences of the indi- 
vidual fields, However, the large amplitudes of the observed flows must involve 
transports of heat and solute characteristic of the steady-state system. 

We remark finally that the period of oscillation associated with the transient 
flows is shown to be increased by finite-amplitude effects. This result is based on 
four calculations and is summarized in table 3. 

2. Formulation of the problem 
A layer of fluid of depth d is subjected to uniform heating from below and 

uniform cooling from above. Thus the temperatures are given by T = T, at 
z = 0 and T = T,- AT at z = d. The corresponding values of the solute are 
S = S, at  z = 0 and S = S,- A S  at z = d.  It is convenient in the following 
analysis to break up the temperature and solute into two parts, (i) the linear part 
given above and (ii) the part due to convective redistribution. Thus 

The boundaries are taken to be dynamically free and are also perfect conductors 
of heat and of the solute. Furthermore, we shall restrict our attention to two- 
dimensional motions; i.e. quantities are assumed to be independent of the 
horizontal co-ordinate, y . 

The Boussinesq equations of motion which we shall use in the aimlysis are 
composed of the equations for the conservation of momentum, 

a 1 
- v + v . v v =  ----v 
at P7H 

+ g ( d '  - /3S) k + vV'V, 

the conservation of mass, 
au aw -+- = 0, 
ax az 

the conservation of heat, 

and the conservation of solute, 

ax A S  
at d 
-+v.vs-w- = K,V'X, 

(2.3) 

(2.4) 

where the linearized equation of statte 

P = P,, , ( l -aT+m 

has been used in the body force term in (2.2). The unit vertical vector is denoted 
by k ;  K and K, are the kinematic diffusivity coefficients of heat and solute 
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respectively; pr,$is the mean density of the system; and vis the kinematic viscosity. 
The quantities 01 and p are given by 

a.nd g is gravitational acceleration. The temperature, T ,  and solute, S, are the 
deviations from the linear form defined in (2.1). The vector v = (u ,w)  is the 
velocity. 

A convenient non-dimensionalization is v = v ’ K / ~ ,  t = t ’d2 /K ,  (x, z )  = d(x’, z’), 
T = T‘AT, S = S‘AS, p f  = pd2/p,, VK. We shall substitute these non-dimensional 
forms and drop the primes with the understanding that all variables are now non- 
dimensional. Furthermore, we introduce a streamfunction defined by 

u = a$/az, w = -a$/ax (2.6) 

and upon eliminating p by cross-differentiating (2 .2 )  we derive the vorticity 

aT as 1 equation ( l i - V 2 )  Vz$ = -R-+Rs-+ -J ($ ,V2$) .  ax ax 
The equations for T and S become 

where the Jacobian, J ,  is defined as 

The following non-dimensional parameters appear: 

ratio of diffusivities: 

Prandhl number: = V/K, 

7 = K,/K, 

Rayleigh number: R = g a A T d 3 / ~ ~ ,  

Solute Rayleigh number: R, = g P b % i ? 3 / ~ ~ .  

( 2 . 7 )  

(2.8) 

(2.9) 

(2.10) 

Note that R, is defined N-ith K rather than K, in the denominator. The boundary 
conditions are 

$ = - _ = T = S = O  at z = 0 , 1 .  a2$ (2.11) 
a x 2  

We shall solve the non-linear problem given by ( 2 . 7 ) ,  (2.8), (2.9) and (2.11) by 
substituting Fourier series in x and z for $, Sand T and evaluating the coefficients 
of a finite number of terms. Thus let 

,v JI 

n = l 7 n = 1  

,v M 

n=l m = O  

N J 1  

n-1 ni-0 

~ = C alnnsiiimnaxsinnnz, 

T = r; C b,,,cosmnaxsinnnz, 

8 = z; C ~,~,cosrnnaxsinn.rrx, I 
(2.12) 
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where the unn, b,,, cnrn are generally functions of time, and where M and N 
are integers which determine the size of the representation. These functional 
forms satisfy the boundary conditions (2.11). The quantity a: in (2.12) is the hori- 
zontal wave-number of the basic cell; i.e. the (dimensional) horizontal width of a 
cell is given by dla. Throughout the calculations a2 = &, the value given by 
linear stability theory. The coefficients am%, b,, and crnn are determined by the 
following equations, which are derived by substituting (2.12) into (2.7), (2.8) and 
(2.9): 

(2.13) 

(2.14) 

where p and q range from 0 to M and 1 to N respectively and &ij is the Kronecker 
delta. The overdot on the left-hand side of each equation denotes a time de- 
rivative. An equation similar to (2.14) gives d p q  if b,, is replaced by cpn and r 
multiplies the first term on the right. 

21 Fluid Mech. 34 
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The numerical procedure is described elsewhere (Veronis 1966, 1968) and will 
not be discussed here. It suffices to note that we choose a maximum number of 
modes, K ,  and calculate all components and all interactions such that 

M + N  6 K .  

Systems with K = 4 , 6 , 8  and 10 were treated. The accuracy of the representation 
is mentioned in connexion with the different results in 5 4. 

3. Stability analysis 
The linear stability problem is obtained when the Jacobian terms in (2.7) to 

(2.9) are neglected. It has been solved in I and also by Sani (1965), so that here 
we simply summarize the results. Substituting solution forms 

(3.1) ~ N e p t  sin r a x  sin m; T, s N e p t  cos 7~ax sin r z  

into the above linearized equations reduces the problem to the solution of the 
characteristic equation 

+ G T E ~ + ( R , - T R ) ~ ~ T ~ C C ~  = 0, ( 3 . 2 )  

where E2 = +'(a2 + 1). In  the above p = pr+ ipi is a complex number whose real 
part, p,, respresents the growth rate and whose imaginary part, ipt, contains 
the time-oscillatory behaviour. The quantity a! is the horizontal wave-number 
corresponding to the cellular solutions (3.1). 

If CT, T and R, are taken as given andp, = 0, then (3.2) represents the relation 
between the frequency parameter, pi, the wave-number, a, and the Rayleigh 
number R.  For this marginally stable state two types of solution are possible. 
For pi = 0 steady convective modes exist when 

R = RC R,/T + k6/i,r2a2. (3.3) 

For arbitrary (real) values of pi, overstable modes exist when 

The corresponding value of pi is given by 

Both RC and €2" have minimum values when a2 = &. As Rs-+m, the asymptotic 
behaviours €or RC, R" and pq are 

( 3 . 6 )  

These asymptotic results show that, for small values of 7 or large values of g, 
Ro/Rc-+r. If t,he solute is salt, for example, Ro/RC+-O.O1. 
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Although the above results are formally correct, P. G. Baines of Cambridge 
University has pointed out to me that an extension of the analysis of the stability 
problem leads to additional, pertinent results for the convective modes. His point 
is that, if one takes the limit pi-+O, then the corresponding set of oscillatory 
modes with zero frequency can be interpreted as convective modes. These occur 
with pT > 0, i.e. as growing modes, and in some cases the corresponding value 
of R is less than Re. 

6 i 
Rc/ '  // 

/= Rs 

/. 
, , '  /- 

2 3 4 5 
I 
7 

Log Rs 
FIGURE la.  Values of Re, Ro, Roo, and R f  (the latter obtained with K = 2) are plotted as 
functions of R, for the case 7 = u = 10. The curve for Roo approaches the line R = R, 
as R, becomes large. 

Following Baines's procedure we write ( 3 . 2 )  as 

y3 + (a + 7 + 1)  y2+ (7 + OT + a - R' + RL)y + OT -I- RI, - 7R' = 0, (3.7) 

where y = p /k2 ,  R' = Ranr2a2/k6, R~i = R,mr2a2/kG, In  general, y has three roots, 
with two of them being complex conjugates and corresponding to oscillatory 
modes which may grow or decay. The limit of zero frequency is given by the 
vanishing of the discriminant of (3.7),  i.e. by 

[7+ OT+ c-- R' + RL- $(a+ T +  1)']I3+$[Q(~ + T + 1)3 

- (a + 7 + 1)  (7 + VT+ - R' +Xi) + ~ ( O T  + RL - TR')]' = 0. (3.8) 

This is a cubic equation for R' and can readily be solved for different values of 
a, 7 and R,. The corresponding value of R = R'k6/an2a2 (this will be denoted by 
R o o  for the case where the frequency of the oscillation vanishes) achieves its 
minimum for 012 = i. Asymptotically it is clear that R'+ Rr or R+ R, as Rs-tm. 
Hence, if steady convection is interpreted as the limiting case of Ro as pi -+ 0, the 

21 -2 
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value of R for which steady motions can first occur is lower than predicted by 
steady theory and as R, + co steady motions can take place as soon as the fluid 
is gravitationally unstable.? 

2 3 4 5 6 7 8 

Log R, 

FIGURE 1 b .  Values of Rc, R O ,  Roo and Rf (the latter obtained with K = 2) are plotted as 
functions of R, for the case T = IO-k, CT = 1. Roo approaches the line R = R, asymptotic- 
ally. Also shown by black dots are the values of R f  obtained with K = 10. 

Finally, second-order theory based on an analysis with K = 2 predicts that 
finite-amplitude steady motions occur a t  values of R (denoted by Rf) considerably 
lower than those values predicted by linear theory. The analysis in I shows that 
these motions occur for 

and, since Rf achieves a minimum at a2 = 4, for 

Rf = [ ( 7R,): + (( 1 - T ~ )  y7r4)6I2. (3.10) 

Asymptotically R f  --f 7R, as Rs + CO. One of the purposes of the present study is 
to determine the change in Rf  as K is increased. 

CT = 10 (approxi- 
mately the values for salt water) and 7 = 10-4, cr = 1. 

In  figure 1 the above results are summarized for T = 

t The fact remains, of course, that Roo > R0 SO that oscillatory motions will occur first. 
The value R o o  stands as a correction to RC and, although the linear analysis still predicts 
instability to oscillatory modes, the above result may be useful for interpreting some of tlic 
finite - amplit udc results . 
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4. Finite-amplitude, steady flows 
The principal integral results which are described below are the values of the 

Nusselt number, Nu, and the solute Nusselt number, NU*, as functions of R, 
R,, 7 and v. The Nusselt number is defined as the ratio of the vertical heat flux, 
H ,  to the conductive vertical heat flux. In  the steady state the vertical kinematic 
heat flux is independent of the vertical co-ordinate, x ,  and can be evaluated as 

where the angular brackets correspond to a horizontal average. With the 
definition of Ttota, from (2.1), (4.1) can be written 

AT AT 
H = K -  - K -  C nnbo, 

d d n = l  

and the Nusselt number is 

Similarly 
A' 

n = l  
Nus = 1--71. I: nc,,. (4.4) 

Choice of values of external parameters 

Our purpose is to determine the effect of the stabilizing gradient of the solute on 
the destabilizing effect of the adverse temperature gradient. The results on 
stability given in the foregoing section clearly outline the magnitude of the 
effects of R,. Thus when R, is sufficiently small (much less than R, = 33r4 ,  the 
critical Rayleigh number for ordinary BBnard convection with no solute present) 
the effect of the solute is to modify the results for ordinary convection by only 
a small amount. As R, is increased to the order of R,, the values of R at which the 
various types of instability can first occur also increase and as R,q becomes very 
large the values of RC, Ro, Rf and R"" approach asymptotic values. The exact 
behaviour of the system as a function of R, depends on 7 ,  the ratio of the diffusi- 
vities, as well as on the Prandtl number, (T. The dependency on v does not appear 
to be very strong so that only a few results for CT different from unity are reported. 

The method of solution which is employed here gives accurate results for only 
limited ranges of the external parameters. In particular, we note that, when finite- 
amplitude convection occurs, the temperature and solute profiles are no longer 
linear in x and, in fact, become quite distorted. The heat flux is given by (4.1) and 
a similar expression obtains for the solute flux. Hence, the relative magnitudes 
of heat flux and solute flux are determined in part by the ratio 7 = K,/K. The more 
that T differs from unity, the larger the difference in boundary gradients of S and 
T. Hence, as 7 becomes smaller, more terms are needed in the expansion t o  
describe the spatial distribution of the solute. 

We restrict our calculations to the cases 7 = 2-4 and T = 10-4 and determine 
the dependence of the results on r by what can be extracted from a comparison 
of the results for these two values. In order to deduce the behaviour of the system 
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on R, we have carried out calculations in the range 103 6 R, 6 2 x lo4 so that 
we treat flows where R,9 < R, and also R, $ R,. Thus we consider systems for 
which the stabilizing gradient is mild and others for which t4he st,abilizing gradient 
is dominating. 

Heat jlux and solute jlux 

In table 1 the values of N u  and NuS for several values of R for the case 7 = 10-9, 
R, = 103 are tabulated. The first three columns give the results obtained with 
K = 6, 8, 10 for (r = 1. The degree to which the values of Nu and Nus agree for 
successively larger values of K reveals the accuracy of the representation. Thus 

u = 10 u = 0.1 0- = 1.0 u = 1.0 
Ro = 1,831 RO = 3,981 R, = 0 R" = 1,797 

K = 6  K = 8  K - 1 0  K - 1 0  K = l O  R = 8  R 

1,797 1.0 
1.0 

1,900 osc. 

2,000 3.314 
1.792 

2,500 4.425 
2.513 

5,000 5.919 
3.731 

10,000 - 

1 -0 1.0 
1 . 0  1.0 

osc. osc. 

3.307 3.307 
1.787 1.787 

4.450 4.451 
2.505 2.505 

6.372 6.490 
3.7 14 3.709 

7.756 8.360 
4.961 4.965 

1 -0 
2.0 

osc. 

3.279 
1.769 

4.460 
2.506 

6.436 
3.681 

1.0 - 

1 .o - 

1.0 - 

1.0 - 

3.393 - 

1.844 2.F96 
4.450 - 

2.507 2.981 
6.544 - 

3.736 3.923 

- 5.064 
- __ 

TABLE 1. Nus and N u  v5. R and w. The values of N u s  and N u  {with NuS the upper value in 
each pair) for 7 = lo-*, R, = loa with three different values of u. The first three columns 
of values were obtained with K = 6,8,10 respectively for u = 1 and are meant to show the 
accuracy of the representation. The next two columns were obt,ained with u = 10 and 
u = 0.1 and show the dependence of NuS  and N u  on u. The last column gives the values of 
N u  for the case with u = 1.0, R, = 0. As R becomes large the values of N u  for u = 1.0, 
R, = lo3 are seen to approach those with no stabilizing salt gradient (R, = 0). The symbol 
Osc. means that the flow is oscillatory. Values of 1.0 correspond to no convection. 

we observe that at  R = 2000 and R = 2500 the results agree to four significant 
digits for K = 8 and K = 10 and at  R = 5000 the value of NuS with K = 10 
differs by 1.5% from that obtained with K = 8. At R = 10,000 the value for 
Nu$ with I< = 10 differs so much (ca. 7 yo) from that with K = 8 that it is clear 
that the representcation should be increased. Since we wish to consider results 
for Nu and Nu9 which are accurate to 1 yo, we shall restrict our attention to the 
range of R for which this accuracy is obtained. All results reported in the remainder 
of this paper satiqfy the criterion that the estimated error i s  less than 1 yo. 

Turning our attention now to the physical content of the results tabulated in 
table 1, we note first that the values for u = 1, K = 10 show that the fluid 
exhibits oscillatory behaviour for 1797 < R < 2000 and a well-developed, finite- 
amplitude steady motion at  R = 2000. In  view of the fact that the point of 
instability to overstable modes occurs at  Ro = 1797 it is clear that the fluid first 
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becomes unstable to overstable motions and these persist, increasing in ampli- 
tude as R is increased. When R reaches a value between 1900 and 2000, finite- 
amplitude instability to a steady convective mode occurs and the system settles 
into a steady convective pattern. The amounts of heat and solute convected by 
the overstable modes are somewhat smaller than the amounts convected by 
steady modes. Hence, the basic thermal and solute fields are not distorted as 
much as they are when the steady convective mode is established. 

An additional point which we note in this case is that the value of Rf obtained 
with K > 2 is considerably higher than that derived with K = 2. This has been 
found to be true in all of the calculations which have been carried out. The value 
of Rf is still substantially lower than RC (=  3820). Prom this general behaviour 
we deduce that the minimum number of modes used for the representation in I 
grossly underestimates the minimum value of R at  which finite-amplitude 
instability occurs. 

The next two columns in table 1 list the values of Nu, and N u  obtained with 
K = 10 for fluids with c~ = 0.1 and c~ = 10. It is evident that the dependence of 
N u  and Nus on Prandtl number is very weak, at  least for the range shown, with 
differences of the order of 4 %  or less. At R = 1900 calculations with c~ = 0.1 
show that the system simply decays, whereas for IT = 1 and c~ = 10 the fluid 
exhibits oscillatory behaviour. This qualitative difference in behaviour can be 
directly traced to the linear stability analysis since Ro = 3981 for the case with 
c~ = 0.1 and RO < 1900 for the other two cases. Hence instability is first mani- 
fested as a finite-amplitude steady mode when c~ = 0.1. We note also that the 
values of N u  and NuS for (T = 1 and c~ = 10 are closer to each other than they are 
to those for c~ = 0.1. This behaviour is presumably an extension of the quali- 
tatively different response of the fluid with c~ = 0.1 to infinitesimal perturba- 
tions. The values of N u  and Nu" show a more uniform variation with c~ when R 
is relatively large. 

Although the presence of a stabilizing gradient of solute will serve to inhibit 
the onset of convection, the strong finite-amplitude motions which exist at  
sufficiently large Rayleigh numbers tend to mix the solute and distribute it so 
that the interior layers of the fluid are more nearly neutrally stratified. When this 
happens, the inhibiting effect of the solute gradient is greatly reduced and the 
fluid can convect nearly as much heat as it does in the absence of the solute. The 
column headed by R, = 0 in table 1 gives the Nusselt number obtained when no 
solute is present and we see that as R increases the values of N u  with R, = 103, 
ri = 1 approach the values with R, = 0. 

Calculations of N u  and Nus as functions of R for a range of R, yield several 
important pieces of information. One is a corrected estimate of Rf, the minimum 
value of the Rayleigh number for which finite-amplitude steady motions occur. 
The analysis with K = 2 shows that Rf tends to TR, as R, becomes large. With a 
more complete representation of the T, 8 and $-fields a better estimate is possible. 
In  table 2 we list the numerical values of Rf obtained with K = 2 for a range of 
values of R, and for fluids with c~ = 1 , ~  = 10-4 and c~ = 1 , ~  = 2-4. Also tabulated 
are ranges within which Rf lies according to the analysis with K = 10. For ex- 
ample, for c~ = 1, T = 10-4 at R, = 101 no steady motion occurs with R = 1200 
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but a steady solution is obtained for R = 1300. Also given are the steady values 
of Nu and Nus for the larger of the two values of R in each entry (1300 in the 
example mentioned). 

The above ranges for Rf (li = 10) for the fluid with (T = 1, 7 = 10-4 are in- 
cluded as solid circles for the appropriate value of R,$ in figure 1 b. 

R,  R f  (I< = 2) Rf (I< = 10) Nu ( K  = 10) A-uq ( K  = 10) 

ff = 1, 7 = 10-4 

102 1,178 1,200-1,300 1.714 3.219 
103 1,773 1,900-2,000 1.787 3.307 
1 oa 3,130 4,100-4,200 2.355 4.163 
104 6,490 1 O,60O-10,700 3.086 5.381 

U = 1, T = 2-4 

lo t  ljone None None h-one 
10; 8,000 2,000-2,100 1.369, 1.634 
102 4,280 4,400-4,500 2.208 2.668 
104 10,450 11,300-1 1,400 2.590 3.080 

2 x 104 1 8,7 80 21,300-21,400 2.964 3.505 

TABLE 2. Rf 2's. R, for u = 1. Values of Rf obtained with K = 2 are shown for several 
values of R, for fluids with u = 1,  T = lo-+ and cr = 1, T = 2-4. Also tabulated are tho 
ranges of R within which Rf occurs when K = 10. The values of Nu and A7us correspond 
to the larger value of R in each range. 

We observe first that the values of Rf obtained with K = 10 are substantially 
higher than those obtained with K = 2. The most significant qualitative result 
which appears is that finite-amplitude motions occur only for values of R greater 
than R,. In other words, the imposed temperature difference must at  least 
compensate for the imposed solute difference for steady motion to exist. Although 
this result is available only for fluids with r = 10-4 and 2-4 and the ranges of R, 
which are shown, it is probably a general result. Certainly it has intuitive appeal, 
especially since RflR,+ 1 as R,-tco. The indications are that for large R,, once 
the stability becomes even mildly superadiabatic, very strong convective 
motions are generated. 

When convection occurs, more solute and heat will be transported than by 
conduction alone. Since the fluid layer is stably stratified by S and unstably 
stratified by T ,  positive buoyancy will be generated by the vertical flux of solute 
and negative buoyancy by the vertical flux of heat. The net result of these two 
processes will be a flux of density through the fluid. 

We can derive an expression for the density flux through the fluid in the follow- 
ing way: the non-dimensional density perturbation is defined as 

and the associated vertical density gradient is given by 

a p) = PAX (- 1 + g) +aAT (1 - g) . 
P,n 

(4.6) 
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The non-dimensional density flux, Fp, a t  the boundary x = 0 can be written as 

= K,PASNU"- KCCATNU. (4.7) 

A convenient scaling is obtained by defining the density flux in units of the 
non-dimensional heat flux due to the imposed temperature difference, i.e. 

(4.8) 

When the first term on the right-hand side exceeds the second, the density flux 
will be positive upward and vice versa. Hence, since we note from table 1 that 
the ratio Nus/Nu is approximately constant (somewhat less than 2)' the down- 
ward density flux increases as R increases. 

On the other hand, consider the value of the density flux as a function of R, 
when steady motions can just be established, i.e. at  R = Rf .  We noted earlier 
that RfIR, starts off with a value larger than unity for small R, and approaches 
unity as R, becomes large. Hence, for small values of R,, the first term in (4.8) will 
be relatively smaller and the density flux will be more negative. As Rs-+w, 
RJRf  + 1 and the first term becomes larger. From table 2 we can substitute 
the pertinent numbers and we find that for the cases with r = 10-4 and r = 2-6 
the first term in (4.8) approaches a limit given by 

If we now define a diffusion coefficient for density, K ~ ,  by dividing (4.7) by 
the negative of (4.6) evaluated a t  the boundary, we find 

K ,  R,Nu3 - KR NU rR, Nus - R N u  
I' - d p z  (+IP,,,)a=O R, N U S -  R N U  R, x u s  -- R Nu 1 (4.10) = K  ~ - -  - - FP 

~ ~ ~~ K E  

and substituting (4.9) yields 
474 - 1) R X E  

p (r--j - 1)RNu 

or K,,+ - (KK, )h .  (4.11) 

Hence, the density will 'diffuse' with a negative molecular diffusion coefficient 
whose magnitude is the square root of the product of the two diffusivities. It is 
not clear how the idea of such a negative diffusion coefficient will be useful but the 
above result seems to  be a general one for the steady flows. The reason for the 
negative diffusion coefficient is clear. The solute gradient at  the boundary must 
be considerably sharper than the temperature gradient and the net effect on the 
density is to create a stable density field. Yet the convecting fluid must be 
transporting negative density upward. Hence, the flow of density is up the 
gradient. 

I mentioned the above result to Dr Claes Rooth, who subsequently produced 
an alternative derivation of (4.11). In  his argument he assumes that boundary 

K -> 
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layers of solute and temperature are formed near z = 0 and that the fluxes can 
be expressed as diffusive fluxes in terms of the imposed quantities AT and AS and 
the boundary-layer scales 1, and I , .  Thus, denoting the respective contributions of 
heat flux and solute flux to the density flux by H F  and S F  respectively, he has 

K ~ A T  KJAS H P = - -  , S F = -  
1, 4 

and the ratio in the limit of RJRf + 1 (aAT/pAX --f 1) is 

HFISF -+ - K l s / K s l m .  

Rooth takes the diffusive scales to be proportional to the square root of the 
diffusion; then 

and HFISP --f - I--*. 

This statement is equivalent to our (4.9) and the rest of the argument follows that 
given above. 

Solute and temperature distributions 

More detailed information about the lbehaviour of the convecting fluid may be 
obtained from the spatial distributions of the temperature, solute and density 
fields. We shall show contours of S and T as defined by the non-dimensional 
quantities, 

The perturbation density field is given by (4.5). On multiplying (4.5) by g d 3 / ~ v  
we can define a non-dimensional density as 

Finally, to normalize the above expression we write 

(4.12) 

(4.13) 

Equation (4.13) defines the density perturbation in units of the density difference 
associated with the imposed difference in temperature, AT, across the fluid 
layer. 

Figures 2a, 2 b  and 2 c  show contours of T, S and p in a half-cell for the case 
= 1 , 7  = 10-9, R, = lo3, R = 2500. Convection is fairly strong (the correspond- 

ing Nusselt number is 2.505) and the formation of anvil-shaped plumes of iso- 
therms is just noticeable in figure 2a. Such plumes are characteristic of strong 
cellular motions in BBnard convection and have also been derived for con- 
vection in a rotating system when the rotation is not too strong (Veronis 1968). 
The isotherms in the centre of the cell are more or less vertical and become 
horizontal near the upper and lower boundaries where conduction is important. 
Also, since conditions of symmetry at the lateral sides of the cell require that 
aT/ax = 0 there, the isot'herms are flat near x = 0 and x = l /a .  
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The contour pattern for the solute shows a more homogeneous structure near 
the centre of the cell (figure 2 b ) .  The fluid is much more thoroughly mixed and a 
large region near the centre has a solute concentration of about S = 0.5. The 

1.0 

5 

0 

1.0 

2 

0 

l la l l a  

1.0 

7 

0 

FIGURE 2. Contour lines of (a )  T, (b )  8, (c) p and ( d )  $ in a half-cell. The lines z = 0 and 
z = l/a are lines of symmetry for T, S and p and lines of antisymmetry for $. For this case 
7 = 10-4, (T = 1, R, = 10, R = 2500. 

vertical contour lines extend closer to the lateral boundaries than do the iso- 
therms and the boundary layers near the edges of the cell are thinner. This 
structure simply reflects the fact that K,  is less than K so that a sharper boundary 
gradient for S is necessary to support flux of solute into or out of the fluid. Also, 
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when convective motion has mixed the fluid, the process of diffusion of the solute 
concentration (which tends to establish the linear distribution of S in the 
vertical to comply with the boundary values) is less effective and the fluid is more 
homogeneous near the centre. 

The density distribution in figure 2 c  reflects the structure of the temperature 
in the int,erior of the cell where S is more nearly uniform. The gradient of the 
density near the upper and lower boundaries is smaller than that of either S or T 
because the density contains the opposing effect of these two gradients. The 
range of p is 0.6 non-dimensional units and is discussed below in connexion with 
figure 3c  

1 .o 

z 0.5 

0 

1 .o 

z 
t 0.5 

1.0 

2 0 5  

0 

10 

FIGURE 3. Graphs of (a)  ( T ) ,  ( b )  (8)  and (c) ( p )  as functions of the vertical co-ordinate, z, 
for the same values of 7 ,  u, R, and R as in figure 2. 



Ejfect of stabilizing gradient of solute on  convection 333 

Figure 2d  shows the streamline pattern for the flow. This structure is character- 
istic of all of the two-dimensional convective motions which have been derived, 
with or without rotation or a solute concentration. 

Figures 3 a ,  3 b  and 3c  show the horizontally averaged temperature, (T), 
solute, (S), and density, ( p ) ,  distributions as functions of the vertical co-ordinate 
z .  The temperature, (T), exhibits a nearly isothermal structure near the centre 
of the cell and, in fact, the vertical temperature gradient is very slightly positive 
in the middle. The solute, (S), shows a stronger boundary-layer structure with 
an obvious reversal in the mid-region of the cell. This reversal of the gradients 
of the horizontally averaged quantities has been deduced for temperature in 
previous studies of two-dimensional B6nard convection. 

The vertically averaged density field again exhibits the opposing effects of 
temperature and salinity and we remark that boundary gradients are smaller 
and so is the region of nearly zero gradient in the middle. Observe, also, that the 
range of the density variation is 0.6 non-dimensional units. This range is due to 
the fact that the 1.0 amount of destabilizing temperature at R = 2500 is offset by 
0.4 units of stabilizing solute (R, = 1000). 

Similar pictures of steady fields have been constructed for both larger and 
smaller values of R. The qualitative behaviour is the same with more (less) 
uniform distribution of S in the mid-regions for larger (smaller) R. 

5. Oscillatory motions of large amplitude 
All of the calculations with v 2 1 show that the first instability is an infinitesi- 

mal oscillatory motion. A subcritical finite-amplitude oscillatory motion was not 
observed in any of the runs. For R in the range Ro < R < Rf a finite-amplitude 
oscillatory motion is established. We know from the analysis of convection in a 
rotating system that when steady motions finally do occur there is a jump in 
the value of the heat transport over that due to overstable motions. The same 
general property has been observed in the present system. Some specific results 
from the calculations for oscillating motions are discussed here. 

Table 3 summarizes the information about the periods of the finite-amplitude 
oscillations for four cases-one with R, = lo3, one with R, = lo4 and two with 
R, = 10;. Listed for each case are the period at the point of instability, R = Ro, 
and the period at  some value R > R". The oscillatory motions which occur for 
R > RO are no longer simple harmonic motions since there is considerable dis- 
tortion of the sinusoidal forms which exist at  the point of instability. Hence, the 
calculations were extended until the field variables exhibited cyclic (albeit not 
simple harmonic) behaviour and the period is the time taken for a cycle. It is 
evident that finite amplitude serves to increase the period of the oscillations in the 
four cases. This was found to be true in all of the calculations which were made of 
finite-amplitude oscillatory motions. 

Figure 4 gives a more detailed picture of the oscillations for the case with (T = 1, 
7 = 10-4, R, = 108, R = 4000. The system has settled into a cyclic response and 
several integral properties are shown as functions of time, starting from an 
arbitrary point in the cycle. N u  and Nus are again measures of the flux of heat 
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and solute respectively through the bottom boundary and FPIK~AT is the density 
flux defined in (4.9). Since the fluid is being heated from below, the net density 
flux upward will be negative and, with the foregoing definition, - FP/mAT will 
be positive. The units of Nu, Nus and - F P / K ~ A T  are shown on the left-hand 
ordinate. The right-hand ordinate marks the units for $,,,, the maximum value 

Rs R" Poriod at  Ro R Period at  R 

103 1,797 0.654 1,900 0.708 
10: 3,220 0.341 3,500 0.367 
10% 3,220 0.341 4,000 0.467 
104 7,220 0.188 8,800 0.227 

TABLE 3. Periods of oscillatory motions for 7 = 10-4, (T = 1. The periods of the oscillatory 
motions are listed in the third and fifth columns respectively for R = Ra and for a value of 
R > R' 

Nus 
Nu 3'0 

2.0 

1 -0 

t 

L -0.5 

FIGURE 4. The quantities Nu, NU*, - F ~ / K A T  and $mx are shown as functions of time for 
one cycle of oscillation of the basic variables for the case R, = 108, 7 = 10-4, (T = 1, 
R = 4000. Since Nu, NuS  and -FP/KcLAT are derived quantities which depend on non- 
linear interactions of the basic variables, they execute two complete oscillations during one 
period. The origin is chosen (arbitrarily) as t = 0 and the length of the period is approxi- 
mately 0.45 non-dimensional nnit,s. 

of the streamfunction, which is also plotted. Since 31. = 0 on the boundaries of 
the half-cell, the value of $.,,, is a measure of the intensity of the circulation. 

The period for Nu, Nus and - F ~ / K ~ A T  is half that of @,,,. The reason for 
this is that the oscillatory behaviour of the fluxes arises from the covariance of the 
velocity and fluctuating temperature or salinity. If @ and T each have a given 
period of oscillation, the covariance will yield the half period. 

The quantity - F P / K ~ A T  has the value 0-75 when the fluid is conducting. We 
see from the figure that during most of the cycle the density flux exceeds the value 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

FIGURE 5. Vertical profiles of horizontally averaged density, (p),  are shown a t  nine times 
during the half cycle, 0 < t < 0.23, of figure 4. The time of each profile is listed in the 
legend on the lower left. The abscissa axis for each successive profile is displaced downward 
one unit (each unit equals 0.05). The range of ( p )  from endpoint to endpoint of each curve 
is the same. The range of variation for ( p )  for the curve at  t = 0.0575, for example, is 
about 30% greater than the range of ( p )  at t = 0. Therefore the curves in the range 
0.02875 < t < 0.115 have a total range of ( p }  greater than the range imposed by the 
boundary conditions . 
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0.75. This excess flux due to convection is a familiar behaviour encountered in all 
problems of this type. For a part of the cycle, however, the density flux is less 
than that due to conduction. Since the density flux is a function of T as well as 
N u  and N u s  and since Nu and Nus are not in phase, there are time intervals in 
each cycle during which the density fluxes due to N u  and Nus tend to cancel each 
other more than they do for conduction alone. During these periods the net 
density flux is small. 

When the net density flux is smaller than that due to conduction alone, the 
convective process must create a sharper gradient of solute near the boundaries 
so that the flux of solute into the layer, measured in terms of the effect on density, 
yields a more stable gradient near the boundaries. Since the temperature and 
solute fields are out of phase, the structure of the density field during a cycle is 
not u priori obvious. To provide a clearer picture we show in figure 5 a sequence 
of vertical profiles of the horizontally averaged density field for nine equally 
spaced times in a cycle of the density flux, i.e. beginning at t = 0 in figure 4 and 
ending with t = 0.23. These profiles show that, during part of the cycle, layers of 
gravitationally stable fluid are present in the boundary regions and a strongly 
unstable layer exists in the mid-regions of the layer. For the remaining interval 
the fluid has unstable gradients near the boundaries with a more neutrally stable 
density distribution in the interior. 

During that portion of the cycle in which the density gradient is stable near 
the boundaries z = 0 and z = 1, the density within the fluid has a value lying 
outside of the range of the imposed density distribution. The solute and tempera- 
ture distributions still lie within the imposed ranges but relative changes of these 
quantities give rise to what seems at  first to be anomalous density behaviour. 
It is clear that the possible range of density variation cannot exceed the values 
determined by the effects of solute and temperature acting individually. 

I am indebted to Dr R. Jastrow,who generously made available the computing 
facilities at  the NASA Institute for Space Studies; Mr A. Rosati for his help in 
running the program and for the automated graphing routines; and the National 
Science Foundation for its continued support under grant number GA-S72. 
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